2011 Consumer Confidence Report

Water System Name: S	an Justo Mutual Water Company	Report Date:	May 2012
	quality for many constituents as required g for the period of January 1 - December		al regulations. This report shows
Este informe contiene info entienda bien.	ormación muy importante sobre su agua	a potable. Tradúz	calo ó hable con alguien que lo
Type of water source(s) in u	use: Well		
Name & location of source((s): 3000 Cienega Road, Hollister, CA	PWS Number CA	A 3500550-001
Drinking Water Source Ass	essment information:		
Time and place of regularly	scheduled board meetings for public partic	cipation: Call La	arry Brink
For more information, conta	ect: Larry Brink	Phone: 83	1 636-9532

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor. taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (ug/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals

MAY 2 5.2012 W/6/P

and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial
 processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
 application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the state Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 7, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

TABLE 1 -	SAMPLING	RESULTS	SHOWING T	HE DETEC	TION OF	COLIFORM BACTERIA
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of months in violation	MCL		MCLG	Typical Source of Bacteria
Total Coliform Bacteria	(In a mo.)	0	More than 1 sample in a month with a detection		0	Naturally present in the environment
Fecal Coliform or E. coli	(In the year)	0	A routine sampl sample detect to and either samp fecal coliform or	tal coliform le also detects	0	Human and animal fecal waste
TABLE 2	- SAMPLIN	G RESUL	rs showing	THE DETE	CTION O	F LEAD AND COPPER
Lead and Copper (complete if lead or copper detected in the last sample set)	No. of samples collected	90 th percentile level detected	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb)	5	0.005	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	5	0.128	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
	TABLE 3 -	SAMPLI	NG RESULTS	FOR SODIU	M AND E	IARDNESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG	Typical Source of Contaminant
Sodium (ppm)	4/8/10	144		none	none	Salt present in the water and is generally

Consumer Confidence Repo	rı					Page 3 o
Hardness (ppm)	4/8/10	463		none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
Any violation of an MCL or A	L is asteriske	d. Additiona	l information reg	garding the v	iolation is pro	vided later in this report.
TABLE 4 – DET	ECTION O	F CONTAI	MINANTS WI	TH A PRI	MARY DRIN	KING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Floride (ppm)	4/8/10	0.3		2.0	1.0	Erosion of Natural Deposits
Nitrate (NO3) (ppm)	5/17/11	13		45	45	Erosion of Natural Deposits
Total Trihalomethanes	11/14/11	9.4		80	N/A	By-Product of Drinking Water
Haloacetic Acid (ppb)	11/14/11	2.2		60	N/A	Disinfection
TABLE 5 – DETEC	CTION OF	CONTAM	INANTS WITI	H A <u>SECO</u>	<u>NDARY</u> DR	INKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (ppm)	4/8/10	123		500		Runoff/leaching from natural deposits
Sulfate (SO4) (ppm)	4/8/10	263		500		Runoff/leaching from natural deposits
Iron (ppb)	4/8/10	153		300		Leaching from natural deposits
Total dissolved Solids (ppm)	4/8/10	877		1000		Runoff/leaching from natural deposits
Turbidity (NTU)	4/8/10	0.55		5.0		Soil Runoff
Specific Conductance	4/8/10	1428		1600		Substances that form ion's when in water
	TABLE 6	- DETECT	TION OF UNR	REGULAT	ED CONTAI	MINANTS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notifica	tion Level	Health Effects Language

4/8/10

4/8/10

4/8/10

Magnesium (ppm)
Calcium (ppm)

(ppm)

Alkalinity (As CaCO3)

74.5

62.4

334

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Sı	ummary Informati or Monite	on for Viola oring and R				•
VIOLATION	OF A MCL, MRDL, A	AL, TT, OR M	ONITORIN	G AND REF	ORTING REQU	IREMENT
Violation	Explanation		ration	Actions T	aken to Correct Violation	Health Effects Language
0						Danguage
	ter Systems Provid TABLE 7 FECAL INDICATOR-1	7 – SAMPLIN	G RESULTS	SHOWING	7	Water
Aicrobiological Contam	ninants Total No. of	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contamin	
3. coli	(In the year)		0	(0)	Human and animal fecal waste	
Interococci	(In the year)		TT	n/a	Human and animal fecal waste	
Coliphage	(In the year)		TT	n/a	Human and animal fecal waste	
	nformation for Fec Uncorrected Signi	ificant Defi	ciencies, o	r Ground	Water TT	
S	SPECIAL NOTICE FOI	R UNCORRE	CTED SIGN	IFICANT D	EFICIENCIES	
			***************************************	·····		
	VIOL	ATION OF GI	ROUND WA	TER TT		

Page 4 of 5

Consumer Confidence Report

onsumer Confidence Re	2011			Page 5
For	Systems Providing S	Surface Water as	a Source of Drinking Wa	ater
TABLE 8 -	SAMPLING RESULTS S	SHOWING TREATM	ENT OF SURFACE WATER	SOURCES
eatment Technique ^(a) ype of approved filtration				
		Turbidity of the	filtered water must:	
rbidity Performance Star	ndards (b)		or equal toNTU in 95% of m	lessurements in a mont
at must be met through t	the water treatment process)	2 – Not exceed	NTU for more than eight cons	ecutive hours
			NTU at any time.	courte noms.
west monthly percentage rformance Standard No.	e of samples that met Turbidit 1.			
ghest single turbidity me	easurement during the year			
umber of violations of any quirements	y surface water treatment			
Turbidity (measured in law Turbidity results which in the sy violation of a TT is man	meet performance standards a arked with an asterisk. Additi	ne cloudiness of water and are considered to be in con- conal information regarding	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below.	and filtration performan
Turbidity (measured in) Turbidity results which in the properties of a TT is many violation of a TT is many violation.	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additionally and a summary Informat	e cloudiness of water and are considered to be in concornal information regardination for Violation	is a good indicator of water quality inpliance with filtration requirements ag the violation is provided below. Of a Surface Water TT	and filtration performai
Turbidity (measured in land) Turbidity results which in land is many violation of a TT is many	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additional Additional Property of the National Property of the	e cloudiness of water and are considered to be in concornal information regarding ion for Violation (ION OF A SURFACE)	is a good indicator of water quality inpliance with filtration requirements ag the violation is provided below. Of a Surface Water TT	and filtration performan
Turbidity (measured in) Turbidity results which in y violation of a TT is ma	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additionally and a summary Informat	e cloudiness of water and are considered to be in concornal information regardination for Violation	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below. Of a Surface Water TT WATER TT	
Turbidity (measured in) Turbidity results which is y violation of a TT is ma	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additional Additional Property of the National Property of the	e cloudiness of water and are considered to be in concornal information regarding ion for Violation (ION OF A SURFACE)	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below. Of a Surface Water TT WATER TT Actions Taken to Correct	Health Effects
Turbidity (measured in) Turbidity results which is y violation of a TT is ma	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additional Additional Property of the National Property of the	e cloudiness of water and are considered to be in concornal information regarding ion for Violation (ION OF A SURFACE)	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below. Of a Surface Water TT WATER TT Actions Taken to Correct	Health Effects
Turbidity (measured in) Turbidity results which is y violation of a TT is ma	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additional Additional Property of the National Property of the	e cloudiness of water and are considered to be in concornal information regarding ion for Violation (ION OF A SURFACE)	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below. Of a Surface Water TT WATER TT Actions Taken to Correct	Health Effects
Turbidity (measured in) Turbidity results which in y violation of a TT is ma	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additional Additional Property of the National Property of the	e cloudiness of water and are considered to be in concornal information regarding ion for Violation (ION OF A SURFACE)	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below. Of a Surface Water TT WATER TT Actions Taken to Correct	Health Effects
Turbidity (measured in) Turbidity results which in y violation of a TT is ma	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additional Additional Property of the National Property of the	e cloudiness of water and are considered to be in concornal information regarding ion for Violation (ION OF A SURFACE)	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below. Of a Surface Water TT WATER TT Actions Taken to Correct	Health Effects
Turbidity (measured in) Turbidity results which in y violation of a TT is ma	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additional Additional Property of the National Property of the	e cloudiness of water and are considered to be in concornal information regarding ion for Violation (ION OF A SURFACE)	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below. Of a Surface Water TT WATER TT Actions Taken to Correct	Health Effects
Turbidity (measured in) Turbidity results which in y violation of a TT is ma	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additional Addit	e cloudiness of water and are considered to be in considered to be in consonal information regarding ion for Violation (ION OF A SURFACE Duration	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below. Of a Surface Water TT WATER TT Actions Taken to Correct the Violation	Health Effects Language
Turbidity (measured in) Turbidity results which in y violation of a TT is ma	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additional Addit	e cloudiness of water and are considered to be in considered to be in consonal information regarding ion for Violation (ION OF A SURFACE Duration	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below. Of a Surface Water TT WATER TT Actions Taken to Correct	Health Effects Language
Turbidity (measured in) Turbidity results which in y violation of a TT is ma	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additional Addit	e cloudiness of water and are considered to be in considered to be in consonal information regarding ion for Violation (ION OF A SURFACE Duration	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below. Of a Surface Water TT WATER TT Actions Taken to Correct the Violation	Health Effects Language
Turbidity (measured in) Turbidity results which is y violation of a TT is ma	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additional Addit	e cloudiness of water and are considered to be in considered to be in consonal information regarding ion for Violation (ION OF A SURFACE Duration	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below. Of a Surface Water TT WATER TT Actions Taken to Correct the Violation	Health Effects Language
Turbidity (measured in) Turbidity results which in y violation of a TT is ma	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additional Addit	e cloudiness of water and are considered to be in considered to be in consonal information regarding ion for Violation (ION OF A SURFACE Duration	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below. Of a Surface Water TT WATER TT Actions Taken to Correct the Violation	Health Effects Language
Turbidity (measured in) Turbidity results which in y violation of a TT is ma	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additional Addit	e cloudiness of water and are considered to be in considered to be in consonal information regarding ion for Violation (ION OF A SURFACE Duration	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below. Of a Surface Water TT WATER TT Actions Taken to Correct the Violation	Health Effects Language
Turbidity (measured in) Turbidity results which in the survival of a TT is made in the survival of a TT is made in the survival of a TT Violation	NTU) is a measurement of the meet performance standards a surked with an asterisk. Additional Addit	e cloudiness of water and are considered to be in considered to be in consonal information regarding ion for Violation (ION OF A SURFACE Duration	is a good indicator of water quality appliance with filtration requirements ag the violation is provided below. Of a Surface Water TT WATER TT Actions Taken to Correct the Violation	Health Effects Language